The New and Improved

Flask Mega-Tutorial

Miguel Grinberg

The Flask Mega-Tutorial

Miguel Grinberg

2021-07-13

i

Contents

Preface v
1 Who This Book IsFor, v
2 Requirements vi
3 About The Example Application vii
4 How To Work With The Example Code viii
5 Conventions Used In This Book viil
6 Acknowledgements Lo ix
1 Hello, World! 1
1.1 InstallingPython 2
1.2 Installing Flask 2
1.3 A “Hello, World” Flask Application 5
2 Templates 11
2.1 What Are Templates? 12
2.2 Conditional Statements e e 15
2.3 LOOPS . . ot e 15
2.4 Template Inheritance e 17
3 Web Forms 21
3.1 Introduction to Flask-WTF 21
32 UserLoginForm 24
33 FormTemplates 25
34 Form Views 26
3.5 ReceivingFormData L L. 28
3.6 Improving Field Validation 31
377 GeneratingLinks L L 32
4 Database 35
4.1 DatabasesinFlask 35

11

CONTENTS

4.2 Database Migrations e e e 36
4.3 Flask-SQLAIlchemy Configuration 37
4.4 Database Models 38
4.5 Creating The Migration Repository 40
4.6 The First Database Migration 41
4.7 Database Upgrade and Downgrade Workflow 42
4.8 Database Relationships 43
4.9 Playing with the Database 45
4.10 Shell ContexXt 0 i e e e e e e e 48
User Logins 51
5.1 PasswordHashing 51
5.2 Imtroduction to Flask-Login 53
5.3 Preparing The User Model for Flask-Login 53
54 UserLoader Function 54
5.5 LoggingUsersIn 55
5.6 Logging Users Out i it e e 56
5.7 RequiringUsers ToLogin. 57
5.8 Showing The Logged In User in Templates 59
5.9 UserRegistration 60
Profile Page and Avatars 65
6.1 UserProfilePage 65
6.2 Avatars e e e 68
6.3 UsingJinja2 Sub-Templates 71
6.4 More Interesting Profiles L oo 72
6.5 Recording The Last Visit Time ForaUser 74
6.6 Profile Editor 76
Error Handling 81
7.1 ErrorHandlinginFlask, 81
7.2 DebugMode e 83
7.3 CustomErrorPages 85
7.4 Sending Errorsby Email 0oL 87
7.5 LoggingtoaFile 90
7.6 Fixing the Duplicate Username Bug 91
Followers 93
8.1 Database Relationships Revisited 93

8.1.1 One-to-Many e 93

CONTENTS

8.2
8.3
8.4
8.5

8.6
8.7
8.8

8.1.2 Many-to-Many
8.1.3 Many-to-One and One-to-One
Representing Followers
Database Model Representation
Adding and Removing “follows™
Obtaining the Posts from Followed Users
85.1 Joins
85.2 Filters e
853 Sorting
Combining Own and Followed Posts
Unit Testing the User Model
Integrating Followers with the Application

9 Pagination

9.1
9.2
9.3
9.4
9.5
9.6

Submission of BlogPosts o o
Displaying Blog Posts
Making It Easier to Find Usersto Follow
Pagination of BlogPosts
Page Navigation
Pagination in the User Profile Page

10 Email Support

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Introduction to Flask-Mail oL,
Flask-Mail Usage e
A Simple Email Framework
Requesting a Password Reset
Password Reset Tokens
Sending a Password Reset Email
Resetting a User Password
Asynchronous Emails L L oL

11 Facelift

11.1
11.2
11.3
11.4
11.5
11.6
11.7

CSS Frameworks
Introducing Bootstrapo
Using Flask-Bootstrap
Rendering Bootstrap Forms oL,
Rendering of Blog Posts
Rendering Pagination Links,
Before And After

94
95
95
96
98
99
101
102
103
103
104
107

111
111
113
114
117
120
122

125
125
127
128
128
130
132
133
135

vi CONTENTS
12 Dates and Times 145
12.1 Timezone Hell 145
12.2 Timezone CONVErSIONS« o v v v v v vt e e e e e e e e 146
12.3 Introducing Moment.js and Flask-Moment 147
124 Using Moment.js o v v i v i et e e e e e e e e e 148

13 I18n and L10n 153
13.1 Introduction to Flask-Babel 153
13.2 Marking Texts to Translate In Python Source Code 155
13.3 Marking Texts to Translate In Templates 157
13.4 Extracting Textto Translate 158
13.5 Generating a Language Catalog 158
13.6 Updating the Translations, 162
13.7 Translating Dates and Times 162
13.8 Command-Line Enhancements 164

14 Ajax 169
14.1 Server-side vs. Client-side, 169
14.2 Live Translation Workflow 170
14.3 Language Identification 171
14.4 Displaying a “Translate” Link 172
14.5 Using a Third-Party Translation Service 173
14.6 Ajax From The Server 177
1477 Ajax FromThe Client 178

15 A Better Application Structure 183
15.1 Current Limitations L 183
152 Blueprints L e 185
15.2.1 Error Handling Blueprint 185

15.2.2 Authentication Blueprint 187

15.2.3 Main Application Blueprint 188

15.3 The Application Factory Pattern 188
15.4 Unit Testing Improvements o 192
15.5 Environment Variables oo oL 194
15.6 Requirements File 195

16 Full-Text Search 197
16.1 Introduction to Full-Text Search Engines 197
16.2 Installing Elasticsearch 198

16.3 Elasticsearch Tutorial 199

CONTENTS

16.4 Elasticsearch Configuration
16.5 A Full-Text Search Abstraction
16.6 Integrating Searches with SQLAlchemy
16.7 SearchForm
16.8 Search View Function

17 Deployment on Linux
17.1 Traditional Hosting
17.2 Creating an Ubuntu Server
17.3 UsingaSSHClient it
17.4 Password-less Logins
17.5 Securing Your Server e e e
17.6 Installing Base Dependencies
17.7 Installing the Application
17.8 Setting UpMySQL e
17.9 Setting Up Gunicorn and Supervisor
17.10Setting Up NginX oL 0ot e
17.11Deploying Application Updates
17.12Raspberry PiHosting L

18 Deployment on Heroku
18.1 HostingonHeroku
18.2 Creating a Herokuaccount
18.3 Installing the Heroku CLI
184 Setting Up Git o o e
18.5 Creating a Heroku Application
18.6 The Ephemeral File System
18.7 Working with a Heroku Postgres Database
18.8 Loggingtostdout e
18.9 Compiled Translations
18.10Elasticsearch Hosting e
18.11Updates to Requirements
18.12The Procfile o
18.13Deploying the Application o
18.14Deploying Application Updates

19 Deployment on Docker Containers
19.1 Installing Docker
19.2 Building a ContainerImage
19.3 Startinga Container e e e e e e e e e e

vii

201
203
206
209
212

215
215
216
217
218
220
221
222
224
225
227
229
230

231
232
232
232
233
233
234
235
236
237
237
238
239
240
241

viil

20

21

22

19.4 Using Third-Party “Containerized” Services
19.4.1 Adding a MySQL Container
19.4.2 Adding a Elasticsearch Container

19.5 The Docker Container Registry

19.6 Deployment of Containerized Applications

Some JavaScript Magic

20.1 Server-side Support

20.2 Introduction to the Bootstrap Popover Component

20.3 Executing a Function On Page Load
20.4 Finding DOM Elements with Selectors
20.5 Popoversandthe DOM
20.6 HoverEvents
20.7 AjaxRequests
20.8 Popover Creation and Destruction

User Notifications

21.1 Private Messages oo
21.1.1 Database Support for Private Messages
21.1.2 Sending a Private Message
21.1.3 Viewing Private Messages

21.2 Static Message Notification Badge

21.3 Dynamic Message Notification Badge

21.4 Delivering Notifications to Clients

Background Jobs

22.1 Introduction to Task Queues
222 UsingRQ

22.2.1 CreatingaTask

22.2.2 Running the RQ Worker

22.2.3 Executing Tasks

22.2.4 Reporting Task Progress
22.3 Database Representation of Tasks
22.4 Integrating RQ with the Flask Application
22.5 Sending Emails fromthe RQ Task
22.6 TaskHelpers
227 Implementing the Export Task
22.8 Export Functionality in the Application
229 Progress Notifications
22.10Deployment Considerations

CONTENTS

CONTENTS X

22.10.1 Deploymenton a Linux Server 305
22.10.2 Deploymenton Heroku 305
22.10.3 Deploymenton Docker 306

23 Application Programming Interfaces (APIs) 309
23.1 REST as a Foundation of API Design 310
23.1.1 Client-Server i i e 311
23.1.2 Layered System e 311
23.1.3 Cache e 311
23.1.4 CodeOnDemand. 312
23.1.5 Statelesso 312
23.1.6 UniformInterface 312

23.2 Implementing an API Blueprint. 314
23.3 Representing Users as JSON Objects 316
23.4 Representing Collectionsof Users 319
23.5 ErrorHandling 321
23.6 User Resource Endpoints 322
23.6.1 RetrievingalUser i 322
23.6.2 Retrieving Collectionsof Users 323
23.6.3 Registering New Users 325
23.6.4 Editing Users o e e e e e e 326

23.7 API Authentication Lo e 327
23.7.1 TokensInthe UserModel 328
23.7.2 TokenRequests 329
23.7.3 Protecting API Routes with Tokens 332
23.7.4 Revoking Tokens 334

23.8 API Friendly Error Messages oo 334

CONTENTS

Preface

Back in 2012, I decided to start a software development blog. Because I am a do-it-yourselfer
at heart, instead of using Blogger or WordPress, I sat down and wrote my own blog engine,
using a then little known web framework called Flask. I knew I wanted to code it in Python,
and I first tried Django, which was (and still is) the most popular Python web framework. But
unfortunately Django seemed too big and too structured for my needs. I've found that Flask
gave me as much power, while being small, unopinionated and unobtrusive.

Writing my own blog engine was an awesome experience that left me with a lot of ideas for
topics I wanted to blog about. Instead of writing individual articles about all these topics,
I decided to write a long, overarching tutorial that Python beginners can use to learn web
development. And just like that, the Flask Mega-Tutorial was born!

The book that you have in your hands is a new edition of the original tutorial, revised, updated
and expanded in 2017 thanks to the support of almost 600 Kickstarter backers. The materal
was further revised in 2021 after the release of Flask 2.0.

1 Who This Book Is For

This book will take you on a journey through a realistic web development project, from start
to end. If you have just a little bit of experience coding in Python and understand how the web
works at a high-level, you should have no trouble using this book to learn how to develop your
own web applications using Python and Flask.

The tutorial assumes that you are familiar with the command line in your operating system. If
you aren’t, then I recommend that you learn how to execute programs, create directories, copy
files, etc. using the command line before you begin.

If you have learned Flask with my original Mega-Tutorial, this new edition will introduce you
to new features in Flask that did not exist when I wrote the original articles, as well as give you
an updated look at important topics such as authentication, full-text search and international-

xi

Xxii PREFACE

ization. In addition to the revised content, this version of the tutorial includes new chapters
that cover topics that have become relevant in recent times, such as APIs, background jobs and
containers.

2 Requirements

The example code that accompanies this book can be used on any platform on which Python
runs, so Mac OS X, Linux and Microsoft Windows are all valid choices. I have tested all the
code extensively on Python 3.5 and 3.6, so these are the versions I recommend you to use.
Unless specifically noted, the code also runs on Python 2.7, but keep in mind that Python 2.7
will not be supported past the year 2020, so you should seriously consider migrating to Python
3 as soon as possible.

If you are using a Microsoft Windows computer, you probably know that the world of web
development is dominated by Unix-based workflows, and you may rightly feel that you are at
a disadvantage. That should not be a major concern when you work with this book, because
when necessary, specific instructions that apply to Windows users are noted. My assumption
is that if you are working on Windows you will be using the command prompt to work with
your application. If you prefer to use PowerShell, you will need to translate commands to the
appropriate syntax for that shell.

This may be hard to accept if you work on Windows, but I think you will have a better experi-
ence if you force yourself to learn Unix, which can be done right on your Windows computer
without making any drastic configuration changes. My recommendation is that you install
Unix tools on your Windows system and adopt the Unix workflow. If you are interested in
doing this, one option is the Windows Subsystem for Linux (WSL)!, an officially supported
feature of Windows 10 that adds an Ubuntu Linux system that runs in parallel with your Win-
dows operating system and includes Python 3.5. If your system is not compatible with WSL,
then another very good option is Cygwin?, an open-source POSIX emulation layer that includes
Windows ports of a large number of Unix tools, including Python. I have worked with Python
under both WSL and Cygwin and find them perfectly adequate for web development work.

"https://msdn.microsoft.com/en-us/commandline/wsl/about
’https://cygwin.org

https://msdn.microsoft.com/en-us/commandline/wsl/about
https://cygwin.org
https://msdn.microsoft.com/en-us/commandline/wsl/about
https://cygwin.org

3. ABOUT THE EXAMPLE APPLICATION xiil

3 About The Example Application

The application that I'm going to develop as part of this tutorial is a nicely featured microblog-
ging server that I decided to call Microblog. Pretty creative, I know.

Just so that you have some idea of what you will learn if you follow this tutorial, these are some
of the topics that I will cover:

* User management, including secure password handling, logins, user profiles and avatars.
* Database management and database migration support
* Handling of user input via web forms

* Pagination of long lists of items

* Full-text search

* Email notifications to users

 HTML templates

* Working with dates and times

* Internationalization and localization

* Installation on a production server

* Working with Docker containers

* Application Programming Interfaces

* Push notifications

* Background jobs

I hope this application will serve as a template that you can use for writing your own web
applications.

Xiv PREFACE

4 How To Work With The Example Code

I have released the complete source code for this project on the following GitHub repository:
https://github.com/miguelgrinberg/microblog. There is a commit in this repository for each
chapter.

The way I envision you will work through this tutorial is by writing the application on your
own, based on the instructions provided in the text, at least for the first few chapters. You can
certainly copy and paste portions of code from the text or from GitHub to save some typing, but
I think it is important that you familiarize yourself with the task of coding a Flask application by
writing the code yourself, instead of just downloading the files from GitHub (unless explicitly
instructed to do so).

The GitHub repository can serve as a reference if you get lost and can’t get the application to
work. You can compare your files against the code in the repository link provided with each
chapter if you get stuck with a problem you can’t solve.

5 Conventions Used In This Book

This book frequently includes commands that you need to type in a terminal session. For these
commands, a $ will be shown as a command prompt. This is a standard prompt for many Linux
shells, but may look unfamiliar to Microsoft Windows users. For example:

$ python hello.py
hello

In a lot of the terminal examples, you are going to be required to have an activated virtual
environment (do not worry if you don’t know what this is yet, you will find out very soon!).
For those examples, the prompt will appear as (venv) $:

(venv) $ python hello.py
hello

You will also need to interact with the Python interactive interpreter. Examples that show
statements that need to be entered in a Python interpreter session will use a >>> prompt, as in
the following example:

6. ACKNOWLEDGEMENTS XV

>>> print ('hello!')
hello

In all cases, lines that are not prefixed with a $ or >>> prompt, are output printed by the
command, and should not be typed.

6 Acknowledgements

This project would not have been possible without the amazing support of my Kickstarter
backers. My deepest thanks go to Dhritiman Sagar, Alex Anderson, Bahrom Matyakubov,
Dave Finnegan, John Gann, John W. O’Brien, Kojo Idrissa, Mark Anders, Raph, Fredrik
Dahlgren, Jorge Garcia Garcia, Todd Twiggs, Pietro P Peterlongo, Chris Davis, Alexandre
Harano, Bob Jordan, Chris Dent, Chris Jones, CptJason, Daniel Abeles, Daniel Plas Rivera,
Dipanjan Sarkar, Eric Chou, Eric Ho, Graham Williamson, jiho Bak, John Sobanski, Kai Mies,
Len Sumnler, Marc P. Rostock, Michael Sim, Nick Brandaleone, Nnamdi E. Anyanwu, R. Da
Costa Faro, Reimund Klain, Scott Strattner, SNC Cloud Dev (twitter.com/snc_clouddev), T81,
Tobias Siebenlist, Viet Le, Ed Wachtel, Shivas Jayaram, JVA, GenLots.com, Martin Thorsen
Ranang, DFW Python, Allan Swanepoel, Andrej Stabenow, Anthony Bourguignon, Aron Fil-
bert, Auke Bakker, Bryson Tyrrell, Chuck Woodraska, Colin R. Crossman, Dario Varotto,
Dax Morrow, Eric G. Barron, Everett Toews, Fisherworks, flasky mcflaskface, lain Hunter,
Jeremy Barisch Rooney, Jesse Liles, Jindrich K. Smitka, Jing Sheng Pang, Karthik Ramakr-
ishnan, Kevin Porterfield (KP), Leonel Decunta, Martynas Budvytis, Mathew Divine, Matt
Makai (Full Stack Python), Matt Trentini, Michael from Talk Python, Nana B Okyere, Nathan
Sanders, Nduka Obinna Azubuike, Neal Duncan, Philip Penquitt, Rémi Debette, Romer Ibo,
Ryan Hagan, Scott Andrew Underwood, Stephan Simon, Steve Bartell, Timothy DAuria, Vi-
taly Popovich, Yi Luo and the remaining 484 backers.

XVvi PREFACE

Chapter 1

Hello, World!

Welcome! You are about to start on a journey to learn how to create web applications with
Python! and the Flask? framework. In this first chapter, you are going to learn how to set up a
Flask project. By the end of this chapter you are going to have a simple Flask web application
running on your computer!

All the code examples presented in this book are hosted on a GitHub repository. Downloading
the code from GitHub can save you a lot of typing, but I strongly recommend that you type
the code yourself, at least for the first few chapters. Once you become more familiar with
Flask and the example application you can access the code directly from GitHub if the typing
becomes too tedious.

At the beginning of each chapter, I'm going to give you three GitHub links that can be useful
while you work through the chapter. The Browse link will open the GitHub repository for
Microblog at the place where the changes for the chapter you are reading were added, without
including any changes introduced in future chapters. The Zip link is a download link for a zip
file including the entire application up to and including the changes in the chapter. The Diff
link will open a graphical view of all the changes that were made in the chapter you are about
to read.

The GitHub links for this chapter are: Browse®, Zip*, Diff.

'"https://python.org

http://flask.pocoo.org
Shttps://github.com/miguelgrinberg/microblog/tree/v0.1
‘https://github.com/miguelgrinberg/microblog/archive/v0.1.zip
Shttps://github.com/miguelgrinberg/microblog/compare/v0.0...v0.1

https://python.org
http://flask.pocoo.org
https://github.com/miguelgrinberg/microblog/tree/v0.1
https://github.com/miguelgrinberg/microblog/archive/v0.1.zip
https://github.com/miguelgrinberg/microblog/compare/v0.0...v0.1
https://python.org
http://flask.pocoo.org
https://github.com/miguelgrinberg/microblog/tree/v0.1
https://github.com/miguelgrinberg/microblog/archive/v0.1.zip
https://github.com/miguelgrinberg/microblog/compare/v0.0...v0.1

2 CHAPTER 1. HELLO, WORLD!

1.1 Installing Python

If you don’t have Python installed on your computer, go ahead and install it now. If your
operating system does not provide you with a Python package, you can download an installer
from the Python official website®. If you are using Microsoft Windows along with WSL or
Cygwin, note that you will not be using the Windows native version of Python, but a Unix-
friendly version that you need to obtain from Ubuntu (if you are using WSL) or from Cygwin.

To make sure your Python installation is functional, you can open a terminal window and type
python3, or if that does not work, just python. Here is what you should expect to see:

$ python3

Python 3.9.6 (default, Jul 10 2021, 16:13:29)

[Clang 12.0.0 (clang-1200.0.32.29)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

The Python interpreter is now waiting at an interactive prompt, where you can enter Python
statements. In future chapters you will learn what kinds of things this interactive prompt is
useful for. But for now, you have confirmed that Python is installed on your system. To exit
the interactive prompt, you can type exit () and press Enter. On the Linux and Mac OS X
versions of Python you can also exit the interpreter by pressing Ctrl-D. On Windows, the exit
shortcut is Ctrl-Z followed by Enter.

1.2 Installing Flask

The next step is to install Flask, but before I go into that I want to tell you about the best
practices associated with installing Python packages.

In Python, packages such as Flask are available in a public repository, from where anybody
can download them and install them. The official Python package repository is called PyPI’,
which stands for Python Package Index (some people also refer to this repository as the “cheese
shop”). Installing a package from PyPlI is very simple, because Python comes with a tool called
pip that does this work.

To install a package on your machine, you use pip as follows:

Shttp://python.org/download/
"https://pypi.python.org/pypi

http://python.org/download/
https://pypi.python.org/pypi
http://python.org/download/
https://pypi.python.org/pypi

1.2. INSTALLING FLASK 3

$ pip install <package—name>

Interestingly, this method of installing packages will not work in most cases. If your Python
interpreter was installed globally for all the users of your computer, chances are your regular
user account is not going to have permission to make modifications to it, so the only way to
make the command above work is to run it from an administrator account. But even without
that complication, consider what happens when you install a package as above. The pip tool
is going to download the package from PyPI, and then add it to your Python installation. From
that point on, every Python script that you have on your system will have access to this package.
Imagine a situation where you have completed a web application using version 1.1 of Flask,
which was the most current version of Flask when you started, but now has been superseeded
by version 2.0. You now want to start a second application, for which you’d like to use the 2.0
version, but if you replace the 1.1 version that you have installed you risk breaking your older
application. Do you see the problem? It would be ideal if it was possible to have Flask 1.1
installed and accessible to your old application, while also install Flask 2.0 for your new one.

To address the issue of maintaining different versions of packages for different applications,
Python uses the concept of virtual environments. A virtual environment is a complete copy
of the Python interpreter. When you install packages in a virtual environment, the system-
wide Python interpreter is not affected, only the copy is. So the solution to have complete
freedom to install any versions of your packages for each application is to use a different
virtual environment for each application. Virtual environments have the added benefit that they
are owned by the user who creates them, so they do not require an administrator account.

Let’s start by creating a directory where the project will live. I’'m going to call this directory
microblog, since that is the name of the application:

$ mkdir microblog
$ cd microblog

Support for virtual environments is included in all recent versions of Python, so all you need
to do to create one is this:

$ python3 -m venv venv

With this command, I’'m asking Python to run the venv package, which creates a virtual en-
vironment named venv. The first venv in the command is the name of the Python virtual
environment package, and the second is the virtual environment name that I’'m going to use

4 CHAPTER 1. HELLO, WORLD!

for this particular environment. If you find this confusing, you can replace the second venv
with a different name that you want to assign to your virtual environment. In general I create
my virtual environments with the name venv in the project directory, so whenever I ed into a
project I find its corresponding virtual environment.

Note that in some operating systems you may need to use python instead of python3 in the
command above. Some installations use python for Python 2.x releases and python3 for the
3.x releases, while others map python to the 3.x releases.

After the command completes, you are going to have a directory named venv where the virtual
environment files are stored.

Now you have to tell the system that you want to use this virtual environment, and you do
that by activating it. To activate your brand new virtual environment you use the following
command:

$ source venv/bin/activate
(venv) $ _

If you are using a Microsoft Windows command prompt window, the activation command is
slightly different:

$ venv\Scripts\activate
(venv) $ _

When you activate a virtual environment, the configuration of your terminal session is modified
so that the Python interpreter stored inside it is the one that is invoked when you type python.
Also, the terminal prompt is modified to include the name of the activated virtual environment.
The changes made to your terminal session are all temporary and private to that session, so
they will not persist when you close the terminal window. If you work with multiple termi-
nal windows open at the same time, it is perfectly fine to have different virtual environments
activated on each one.

Now that you have a virtual environment created and activated, you can finally install Flask in
it:

(venv) $ pip install flask

If you want to confirm that your virtual environment now has Flask installed, you can start the
Python interpreter and import Flask into it:

1.3. A “HELLO, WORLD” FLASK APPLICATION 5

>>> import flask
>>>

If this statement does not give you any errors you can congratulate yourself, as Flask is installed
and ready to be used.

Note that the above installation commands does not specify which version of Flask you want
to install. The default when no version is specified is to install the latest version available in
the package repository. This tutorial can be followed with Flask versions 1 and 2. The above
command will install the latest 2.x version. If for any reason you prefer to follow this tutorial
on a 1.x release of Flask, you can use the following command to install the latest 1.x version:

(venv) % pip install "flask<2"

1.3 A “Hello, World” Flask Application

If you go to the Flask website®, you are welcomed with a very simple example application
that has just five lines of code. Instead of repeating that trivial example, I'm going to show
you a slightly more elaborate one that will give you a good base structure for writing larger
applications.

The application will exist in a package. In Python, a sub-directory that includes a __init__.py
file is considered a package, and can be imported. When you import a package, the __init__.py
executes and defines what symbols the package exposes to the outside world.

Let’s create a package called app, that will host the application. Make sure you are in the
microblog directory and then run the following command:

(venv) $ mkdir app

The __init__.py for the app package is going to contain the following code:

Listing 1.1: app/__init__.py: Flask application instance

from flask import Flask

app = Flask(__name_)

from app import routes

dhttp://flask.pocoo.org/

http://flask.pocoo.org/
http://flask.pocoo.org/

6 CHAPTER 1. HELLO, WORLD!

The script above simply creates the application object as an instance of class Flask imported
from the flask package. The __name___ variable passed to the Flask class is a Python prede-
fined variable, which is set to the name of the module in which it is used. Flask uses the location
of the module passed here as a starting point when it needs to load associated resources such as
template files, which I will cover in Chapter 2. For all practical purposes, passing __name
is almost always going to configure Flask in the correct way. The application then imports the
routes module, which doesn’t exist yet.

One aspect that may seem confusing at first is that there are two entities named app. The app
package is defined by the app directory and the __init__.py script, and is referenced in the
from app import routes statement. The app variable is defined as an instance of class
Flask in the __init__.py script, which makes it a member of the app package.

Another peculiarity is that the routes module is imported at the bottom and not at the top
of the script as it is always done. The bottom import is a workaround to circular imports, a
common problem with Flask applications. You are going to see that the routes module needs
to import the app variable defined in this script, so putting one of the reciprocal imports at the
bottom avoids the error that results from the mutual references between these two files.

So what goes in the routes module? The routes are the different URLs that the application
implements. In Flask, handlers for the application routes are written as Python functions, called
view functions. View functions are mapped to one or more route URLs so that Flask knows
what logic to execute when a client requests a given URL.

Here is the first view function for this application, which you need to write in a new module
named app/routes.py:

Listing 1.2: app/routes.py: Home page route

from app import app

Qapp.route('/")
Qapp.route('/index')
def index():

return "Hello, World!"

This view function is actually pretty simple, it just returns a greeting as a string. The two
strange @app . route lines above the function are decorators, a unique feature of the Python
language. A decorator modifies the function that follows it. A common pattern with decorators
is to use them to register functions as callbacks for certain events. In this case, the Qapp . route
decorator creates an association between the URL given as an argument and the function. In
this example there are two decorators, which associate the URLs / and /index to this function.
This means that when a web browser requests either of these two URLs, Flask is going to

1.3. A “HELLO, WORLD” FLASK APPLICATION 7

invoke this function and pass the return value of it back to the browser as a response. If this
does not make complete sense yet, it will in a little bit when you run this application.

To complete the application, you need to have a Python script at the top-level that defines the
Flask application instance. Let’s call this script microblog.py, and define it as a single line that
imports the application instance:

Listing 1.3: microblog.py: Main application module

from app import app

Remember the two app entities? Here you can see both together in the same sentence. The
Flask application instance is called app and is a member of the app package. The from app
import app statement imports the app variable that is a member of the app package. If you
find this confusing, you can rename either the package or the variable to something else.

Just to make sure that you are doing everything correctly, below you can see a diagram of the
project structure so far:

microblog/
venv/
app/
__init__ .py
routes.py
microblog.py

Believe it or not, this first version of the application is now complete! Before running it, though,
Flask needs to be told how to import it, by setting the FLASK_APP environment variable:

(venv) $ export FLASK APP=microblog.py

If you are using the Microsoft Windows command prompt, use set instead of export in the
command above.

Are you ready to be blown away? You can run your first web application, with the following
command:

(venv) $ flask run

* Serving Flask app 'microblog.py' (lazy loading)

* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

8 CHAPTER 1. HELLO, WORLD!

After the server initializes it will wait for client connections. The output from flask run
indicates that the server is running on IP address 127.0.0.1, which is always the address of
your own computer. This address is so common that is also has a simpler name that you may
have seen before: localhost. Network servers listen for connections on a specific port number.
Applications deployed on production web servers typically listen on port 443, or sometimes 80
if they do not implement encryption, but access to these ports requireis administration rights.
Since this application is running in a development environment, Flask uses the freely available
port 5000. Now open up your web browser and enter the following URL in the address field:

http://localhost:5000/

Alternatively you can use this other URL:

http://localhost:5000/index

Do you see the application route mappings in action? The first URL maps to /, while the second
maps to /index. Both routes are associated with the only view function in the application, so
they produce the same output, which is the string that the function returns. If you enter any
other URL you will get an error, since only these two URLs are recognized by the application.

1.3. A “HELLO, WORLD” FLASK APPLICATION 9

Ml localhost:5000/index

< C 0 @ localhost:5000/index

Hello, World!

When you are done playing with the server you can just press Ctrl-C to stop it.
Congratulations, you have completed the first big step to become a web developer!

Before I end this chapter, I will do one more thing. Since environment variables aren’t remem-
bered across terminal sessions, you may find tedious to always have to set the FLASK_APP
environment variable when you open a new terminal window. Starting with version 1.0, Flask
allows you to register environment variables that you want to be automatically imported when
you run the £1ask command. To use this option you have to install the python-dotenv package:

(venv) $ pip install python-dotenv

Then you can just write the environment variable name and value in a file named .flaskenv
located in the top-level directory of the project:

10 CHAPTER 1. HELLO, WORLD!

Listing 1.4: .flaskenv: Environment variables for flask command

FLASK_APP=microblog.py

Chapter 2

Templates

After you complete Chapter 1, you should have a simple, yet fully working web application
that has the following file structure:

microblog\
venv\
app\
__init_ .py
routes.py
microblog.py

To run the application you set the FLASK_APP=microblog.py in your terminal session (or
add a .flaskenv file with this variable), and then execute £1lask run. This starts a web server
with the application, which you can open by typing the http://localhost:5000/ URL in your
web browser’s address bar.

In this chapter you will continue working on the same application, and in particular, you are
going to learn how to generate more elaborate web pages that have a complex structure and
many dynamic components. If anything about the application or the development workflow so
far isn’t clear, please review Chapter 1 again before continuing.

The GitHub links for this chapter are: Browse', Zip?, Diff .

'https://github.com/miguelgrinberg/microblog/tree/v0.2
’https://github.com/miguelgrinberg/microblog/archive/v0.2.zip
Shttps://github.com/miguelgrinberg/microblog/compare/v0.1...v0.2

11

https://github.com/miguelgrinberg/microblog/tree/v0.2
https://github.com/miguelgrinberg/microblog/archive/v0.2.zip
https://github.com/miguelgrinberg/microblog/compare/v0.1...v0.2
https://github.com/miguelgrinberg/microblog/tree/v0.2
https://github.com/miguelgrinberg/microblog/archive/v0.2.zip
https://github.com/miguelgrinberg/microblog/compare/v0.1...v0.2

12 CHAPTER 2. TEMPLATES

2.1 What Are Templates?

I want the home page of my microblogging application to have a heading that welcomes the
user. For the moment, I’'m going to ignore the fact that the application does not have the concept
of users yet, as this is going to come later. Instead, I'm going to use a mock user, which I'm
going to implement as a Python dictionary, as follows:

user = {'username': 'Miguel'}

Creating mock objects is a useful technique that allows you to concentrate on one part of the
application without having to worry about other parts of the system that don’t exist yet. I want
to design the home page of my application, and I don’t want the fact that I don’t have a user
system in place to distract me, so I just make up a user object so that I can keep going.

The view function in the application returns a simple string. What I want to do now is expand
that returned string into a complete HTML page, maybe something like this:

Listing 2.1: app/routes.py: Return complete HTML page from view function

from app import app

Qapp.route('/")
Qapp.route('/index')
def index():
user = {'username': 'Miguel’'}
return '''
<html>
<head>
<title>Home Page - Microblog</title>
</head>
<body>
<hl>Hello, ''' + user['username'] + '''!</hl>
</body>
</html>'""'

If you are not familiar with HTML, I recommend that you read HTML Markup* on Wikipedia
for a brief introduction.

Update the view function as shown above and give the application a try to see how it looks in
your browser.

“https://en.wikipedia.org/wiki/HTML#Markup

https://en.wikipedia.org/wiki/HTML#Markup
https://en.wikipedia.org/wiki/HTML#Markup

2.1. WHAT ARE TEMPLATES? 13

\8l Home Page - Microblog

< C) @ localhost:5000/index & Yx

Hello, Miguel!

I hope you agree with me that the solution used above to deliver HTML to the browser is not
good. Consider how complex the code in this view function will become when you add blog
posts from users, which are going to constantly change. The application is also going to have
more view functions that are going to be associated with other URLSs, so imagine if one day
I decide to change the layout of this application, and have to update the HTML in every view
function. This is clearly not an option that will scale as the application grows.

If you could keep the logic of your application separate from the layout or presentation of your
web pages, then things would be much better organized, don’t you think? You could even hire
a web designer to create a killer web site while you code the application logic in Python.

Templates help achieve this separation between presentation and business logic. In Flask,
templates are written as separate files, stored in a remplates folder that is inside the application
package. So after making sure that you are in the microblog directory, create the directory
where templates will be stored:

14 CHAPTER 2. TEMPLATES

(venv) $ mkdir app/templates

Below you can see your first template, which is similar in functionality to the HTML page
returned by the index () view function above. Write this file in app/templates/index.html:

Listing 2.2: app/templates/index.html: Main page template

<!doctype html>
<html>
<head>
<title>{{ title }} - Microblog</title>
</head>
<body>
<hl>Hello, {{ user.username }}!</hl>
</body>
</html>

This is a mostly standard, very simply HTML page. The only interesting thing in this page
is that there are a couple of placeholders for the dynamic content, enclosed in {{ ... }}
sections. These placeholders represent the parts of the page that are variable and will only be
known at runtime.

Now that the presentation of the page was offloaded to the HTML template, the view function
can be simplified:

Listing 2.3: app/routes.py: Use render_template() function

from flask import render_ template
from app import app

Qapp.route('/")
Qapp.route('/index')
def index():
user = {'username': 'Miguel'}
return render_template('index.html', title='Home', user=user)

This looks much better, right? Try this new version of the application to see how the template
works. Once you have the page loaded in your browser, you may want to view the source
HTML and compare it against the original template.

The operation that converts a template into a complete HTML page is called rendering. To
render the template I had to import a function that comes with the Flask framework called
render_template (). This function takes a template filename and a variable list of template

	Preface
	Who This Book Is For
	Requirements
	About The Example Application
	How To Work With The Example Code
	Conventions Used In This Book
	Acknowledgements

	Hello, World!
	Installing Python
	Installing Flask
	A ``Hello, World'' Flask Application

	Templates
	What Are Templates?
	Conditional Statements
	Loops
	Template Inheritance

	Web Forms
	Introduction to Flask-WTF
	User Login Form
	Form Templates
	Form Views
	Receiving Form Data
	Improving Field Validation
	Generating Links

	Database
	Databases in Flask
	Database Migrations
	Flask-SQLAlchemy Configuration
	Database Models
	Creating The Migration Repository
	The First Database Migration
	Database Upgrade and Downgrade Workflow
	Database Relationships
	Playing with the Database
	Shell Context

	User Logins
	Password Hashing
	Introduction to Flask-Login
	Preparing The User Model for Flask-Login
	User Loader Function
	Logging Users In
	Logging Users Out
	Requiring Users To Login
	Showing The Logged In User in Templates
	User Registration

	Profile Page and Avatars
	User Profile Page
	Avatars
	Using Jinja2 Sub-Templates
	More Interesting Profiles
	Recording The Last Visit Time For a User
	Profile Editor

	Error Handling
	Error Handling in Flask
	Debug Mode
	Custom Error Pages
	Sending Errors by Email
	Logging to a File
	Fixing the Duplicate Username Bug

	Followers
	Database Relationships Revisited
	One-to-Many
	Many-to-Many
	Many-to-One and One-to-One

	Representing Followers
	Database Model Representation
	Adding and Removing ``follows''
	Obtaining the Posts from Followed Users
	Joins
	Filters
	Sorting

	Combining Own and Followed Posts
	Unit Testing the User Model
	Integrating Followers with the Application

	Pagination
	Submission of Blog Posts
	Displaying Blog Posts
	Making It Easier to Find Users to Follow
	Pagination of Blog Posts
	Page Navigation
	Pagination in the User Profile Page

	Email Support
	Introduction to Flask-Mail
	Flask-Mail Usage
	A Simple Email Framework
	Requesting a Password Reset
	Password Reset Tokens
	Sending a Password Reset Email
	Resetting a User Password
	Asynchronous Emails

	Facelift
	CSS Frameworks
	Introducing Bootstrap
	Using Flask-Bootstrap
	Rendering Bootstrap Forms
	Rendering of Blog Posts
	Rendering Pagination Links
	Before And After

	Dates and Times
	Timezone Hell
	Timezone Conversions
	Introducing Moment.js and Flask-Moment
	Using Moment.js

	I18n and L10n
	Introduction to Flask-Babel
	Marking Texts to Translate In Python Source Code
	Marking Texts to Translate In Templates
	Extracting Text to Translate
	Generating a Language Catalog
	Updating the Translations
	Translating Dates and Times
	Command-Line Enhancements

	Ajax
	Server-side vs. Client-side
	Live Translation Workflow
	Language Identification
	Displaying a ``Translate'' Link
	Using a Third-Party Translation Service
	Ajax From The Server
	Ajax From The Client

	A Better Application Structure
	Current Limitations
	Blueprints
	Error Handling Blueprint
	Authentication Blueprint
	Main Application Blueprint

	The Application Factory Pattern
	Unit Testing Improvements
	Environment Variables
	Requirements File

	Full-Text Search
	Introduction to Full-Text Search Engines
	Installing Elasticsearch
	Elasticsearch Tutorial
	Elasticsearch Configuration
	A Full-Text Search Abstraction
	Integrating Searches with SQLAlchemy
	Search Form
	Search View Function

	Deployment on Linux
	Traditional Hosting
	Creating an Ubuntu Server
	Using a SSH Client
	Password-less Logins
	Securing Your Server
	Installing Base Dependencies
	Installing the Application
	Setting Up MySQL
	Setting Up Gunicorn and Supervisor
	Setting Up Nginx
	Deploying Application Updates
	Raspberry Pi Hosting

	Deployment on Heroku
	Hosting on Heroku
	Creating a Heroku account
	Installing the Heroku CLI
	Setting Up Git
	Creating a Heroku Application
	The Ephemeral File System
	Working with a Heroku Postgres Database
	Logging to stdout
	Compiled Translations
	Elasticsearch Hosting
	Updates to Requirements
	The Procfile
	Deploying the Application
	Deploying Application Updates

	Deployment on Docker Containers
	Installing Docker
	Building a Container Image
	Starting a Container
	Using Third-Party ``Containerized'' Services
	Adding a MySQL Container
	Adding a Elasticsearch Container

	The Docker Container Registry
	Deployment of Containerized Applications

	Some JavaScript Magic
	Server-side Support
	Introduction to the Bootstrap Popover Component
	Executing a Function On Page Load
	Finding DOM Elements with Selectors
	Popovers and the DOM
	Hover Events
	Ajax Requests
	Popover Creation and Destruction

	User Notifications
	Private Messages
	Database Support for Private Messages
	Sending a Private Message
	Viewing Private Messages

	Static Message Notification Badge
	Dynamic Message Notification Badge
	Delivering Notifications to Clients

	Background Jobs
	Introduction to Task Queues
	Using RQ
	Creating a Task
	Running the RQ Worker
	Executing Tasks
	Reporting Task Progress

	Database Representation of Tasks
	Integrating RQ with the Flask Application
	Sending Emails from the RQ Task
	Task Helpers
	Implementing the Export Task
	Export Functionality in the Application
	Progress Notifications
	Deployment Considerations
	Deployment on a Linux Server
	Deployment on Heroku
	Deployment on Docker

	Application Programming Interfaces (APIs)
	REST as a Foundation of API Design
	Client-Server
	Layered System
	Cache
	Code On Demand
	Stateless
	Uniform Interface

	Implementing an API Blueprint
	Representing Users as JSON Objects
	Representing Collections of Users
	Error Handling
	User Resource Endpoints
	Retrieving a User
	Retrieving Collections of Users
	Registering New Users
	Editing Users

	API Authentication
	Tokens In the User Model
	Token Requests
	Protecting API Routes with Tokens
	Revoking Tokens

	API Friendly Error Messages

